

December 2020 Rev. 1.4.2

GENERAL DESCRIPTION

The XRP29302 is a 3A, highly accurate voltage regulator with a low dropout voltage of 600mV (typical) at 3A.

This regulator is specifically designed for low voltage applications that require a low dropout voltage and a fast transient response. It is fully fault protected against over-current, reverse battery, and positive and negative voltage transients. On-Chip trimming adjusts the reference voltage to 1% initial accuracy.

The XRP29302 is offered in a 5-pin TO-263 package.

APPLICATIONS

- Adjustable Power Supplies
- Constant Current Regulators
- Audio and Video/Graphic Cards
- Battery Chargers

FEATURES

- 3A Guaranteed Output Current
- Low Dropout Voltage of 600mV @ 3A
- Adjustable Output down to 1.25V
- 1% Output Accuracy
- Tight Load and Line Regulation
- Fast Transient Response
- Reverse Battery Protection
- Zero Current Shutdown
- Drop-in Replacement to SPX29302
- Lead Free 5-pin TO-263 Package

TYPICAL APPLICATION DIAGRAM

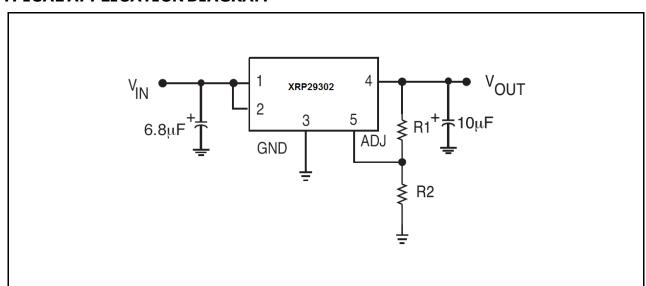


Fig. 1: XRP29302 Application Diagram

ABSOLUTE MAXIMUM RATINGS

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

20V
150°C
260°C
2kV
1kV

OPERATING RATINGS

Input Voltage Range V _{IN}	16V
Junction Temperature Range	-40°C to 125°C
Thermal Resistance	
TO-263 Junction to Case @ T _A	3°C/W
TO-263 Junction to Ambient	60°C/W

Note 1: Maximum positive supply voltage of 20V must be of limited duration (<100ms) and duty cycle of less than 1%. The maximum continuous supply voltage is 16V.

ELECTRICAL SPECIFICATIONS

Specifications with standard type are for an Operating Junction Temperature of $T_J = T_A = 25$ °C only; limits applying over the full Operating Junction Temperature range are denoted by a "•". Minimum and Maximum limits are guaranteed through test, design, or statistical correlation. Typical values represent the most likely parametric norm at $T_J = 25$ °C, and are provided for reference purposes only. Unless otherwise indicated, $V_{IN} = V_{OUT} + 1V$ and $I_{OUT} = 10$ mA, $C_{IN} = 6.8$ µF, $C_{OUT} = 10$ µF, $T_A = 25$ °C.

Parameter	Min.	Тур.	Max.	Units		Conditions
Line Regulation		0.06	0.5	%		$I_{OUT}=10$ mA, $(V_{OUT}+1V) \le V_{IN} \le 16V$
Load Regulation		0.2	1	%		$V_{IN}=V_{OUT}+1V$, $10mA \le I_{OUT} \le I_{FL}$ (note 2)
ΔV/ΔΤ		20	100	ppm/°C	•	V _{OUT} Temp Coefficient (note 6)
		120	300		•	I _{OUT} =100mA
D		380		m V		I _{OUT} =1.5A
Dropout Voltage (note 3)		525	650	IIIV	•	I _{OUT} =2.5A, XRP29302A only
		600	800		•	I _{OUT} =3A
6 16 17 15		30	60	A	•	I _{OUT} =1.5A
Ground Current (note 5)		40		m A		I _{OUT} =3A
Ground Pin Current at Dropout		0.9		m A		$V_{IN} = 0.5V$ less than specified $V_{OUT} I_{OUT} = 10 mA$
Current Limit	3.0	4.5		Α		V _{OUT} =0V (note 4)
		400		\/		10Hz-100KHz, Ι _{ουτ} =100mA, C _{ουτ} =10μF
Output Noise Voltage		260		μV_{RMS}		10Hz-100KHz, Ι _{ουτ} =100mA, C _{ουτ} =33μF
	1.228	1.24	1.252	V		
Reference Voltage	1.215		1.265	V	•	
Ali Ini ni ni		40	80	A		
Adjust Pin Bias Current			120	nA	•	
Reference Voltage Temperature Coefficient		20		ppm/°C		Note 7
Adjust Pin Bias Current Temperature Coefficient		0.1		nA/°C		
Enable Input						
Input Logic Voltage Low (OFF)			0.8	· V	•	
Input Logic Voltage High (ON)	2.4			V	•	V _{IN} <10V
		100	600			V 16V
Enable Input Din			750	μΑ	•	V _{EN} =16V
Enable Input Pin			1	μΛ	•	V _{FN} =0.8V
			2		•	VEN-0.0 V
Regulator Output Current in Shutdown		10	500	μΑ	•	Note 8

Note 2: Full load current (I_{FL}) is defined as 3.0A.

Note 3: Dropout voltage is defined (V_{IN} - V_{OUT}) when the output voltage drops to 99% of its nominal value.

Note 4: $V_{IN}=V_{OUT}(nom)+1V$. Use pulse-testing procedures to minimize temperature rise.

Note 5: Ground pin current is the regulator quiescent current. The total current drawn from the source is the sum of the load current to the ground current.

Note 6: Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range

Note 7: Thermal regulation is defined as the change in output voltage at time T after a change in power dissipation is applied, excluding load/line regulation effects. Specifications for a 200mA load pulse as V_{IN} =20V (a 4W pulse) for t=10ms. Note 8: $V_{EN} \le 0.8$ V and $V_{IN} \le 16$ V, $V_{OUT} = 0$.

BLOCK DIAGRAM

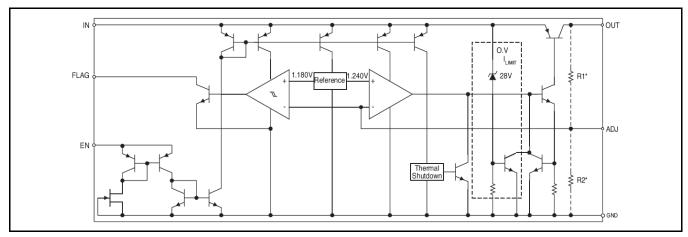


Fig. 2: XRP29302 Block Diagram

PIN ASSIGNMENT

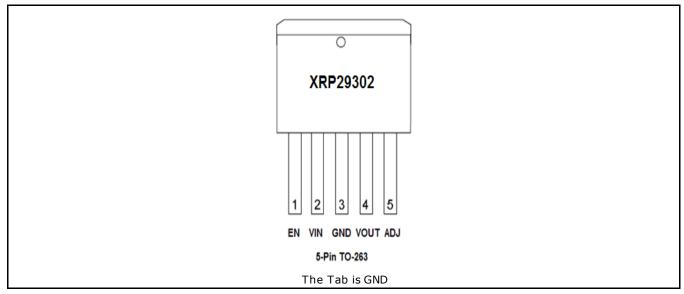


Fig. 3: XRP29302 Pin Assignment

ORDERING INFORMATION(1)

Part Number	Junction Temperature Range	Package	Packing Method	Lead Free ⁽²⁾	Note 1
XRP29302ETBTR-L	-40°C ≤ T ₁ ≤ +125°C	5-pin TO263	Tape & Reel	Yes	
XRP29302AETBTR-L	-40°C ≤ T _J ≤ +125°C	5-pin TO263	Tape & Reel	Yes	Adjustable

Notes:

- 1. Refer to www.maxlinear.com/XRP29302 for most up-to-date Ordering Information.
- 2. Visit www.maxlinear.com for additional information on Environmental Rating.
- 3. XRP29302AETBTR-L has the same package marking as XRP29302ETBTR-L. The "A" designator is only provided on the packaging label.

TYPICAL PERFORMANCE CHARACTERISTICS

All data taken at $V_{IN} = V_{OUT} + 1V$, $T_J = T_A = 25$ °C, unless otherwise specified.

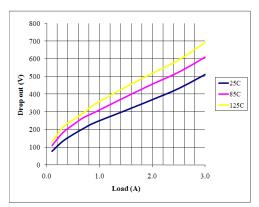
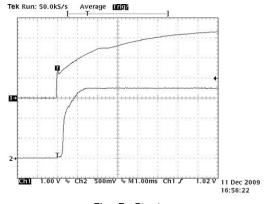



Fig. 4: Dropout Voltage vs Load Current

Tek Run: 50.0kS/s

Fig. 5: Startup

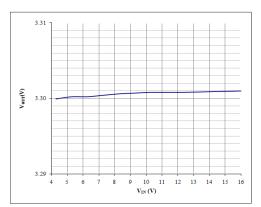


Fig. 6: Line Regulation I_{OUT} =10mA, V_{OUT} =3.3V

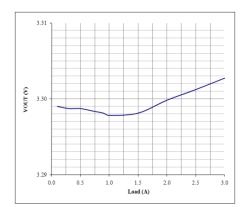


Fig. 7: Load Regulation $V_{OUT} = 3.3V$

Rev. 1.4.2 5/8

THEORY OF OPERATION

The XRP29302 incorporates protection against over-current faults, reversed load insertion, over temperature operation, and positive and negative transient voltage.

THERMAL CONSIDERATIONS

Although the XRP29302 offers limiting circuitry for overload conditions, it is still necessary to that the maximum insure iunction not temperature is exceeded in the application. Heat will flow through the lowest resistance path, the junction-to-case path. In order to insure the best thermal flow of the component, proper mounting is required.

TO-263 DESIGN EXAMPLE:

Assume that $V_{IN}=5V$, $V_{OUT}=3.3V$, $I_{OUT}=1.0A$, $T_A=50$ °C, and $\theta_{JA}=31.4$ C°/W, where:

 T_A = ambient temperature,

 θ_{JA} = junction to ambient thermal resistance The power calculated under these conditions is:

$$P_D = (V_{IN} - V_{OUT}) \times I_{OUT} = 1.7W$$

And the junction temperature is calculated as

$$T_I = T_A + P_D \times (\theta_{IA})$$

or

$$T_J = 50 + 1.7 \times (31.4) = 103.4 ^{\circ} C$$

Reliable operation is insured.

CAPACITOR REQUIREMENTS

The output capacitor is needed to insure stability and minimize the output noise. The value of the capacitor varies with the load. However, a minimum value of 10µF aluminum capacitor will guarantee stability over all load conditions.

A tantalum capacitor is recommended if a faster load transient response is needed. If the power source has high AC impedance, a $0.1\mu F$ ceramic capacitor between input & ground is recommended.

MINIMUM LOAD CURRENT

To ensure a proper behavior of the regulator under light load, a minimum load of 5mA for XRP29302 is required.

ADJUSTABLE REGULATOR DESIGN

The XRP29302 is an adjustable regulator that can be programmed to any value between 1.25V and 16V using 2 external resistors, R1 and R2. The relationship between the resistors and the output voltage is:

$$R_1 = R_2 \times \left(\frac{V_{OUT}}{1.240} - 1\right)$$

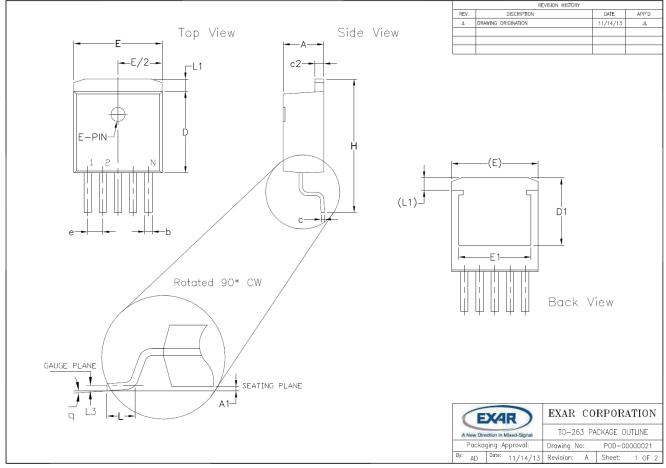
ENABLE INPUT

The XRP29302 has an Enable function that switches the regulator on and off. Their thresholds are TTL compatible. When the regulator is active, approximately 20 μ A flows through the Enable pin.

TYPICAL APPLICATION CIRCUITS

Figure 1 represents the typical implementation for an adjustable output regulator. The values of R1 and R2 set the output voltage value as follows:

$$V_{OUT} = V_{REF} \times \left(1 + \frac{R_1}{R_2}\right)$$


A minimum value of 10kohms is recommended for R2 with a range between $10k\Omega$ and $47k\Omega$.

PACKAGE SPECIFICATION

5-PIN TO263

ECN 1346-06 11/14/2013

3 Pin TO-263 JEDEC TO-263 Variation AA											RFV.	041.00		IN HISTORY	DATE	Ξ
3 Pin T0-263 JEDEC T0-263 Variation AA																H
SYMBOLS DIMENSIONS N INCH Control Unit) MIN NOM MAX MIN NOM M															1.9.1.9.10	Ξ
DIMENSIONS IN INCH																
DIMENSIONS IN INCH																-
DIMENSIONS N NCH Control Unit) Contr																
DIMENSIONS IN INCH DIMENSIONS IN MM (Control Unit) Control Unit) Con																
DIMENSIONS IN INCH DIMENSIONS IN MM (Control Unit) ORGENIES NMM (Control Unit) ORGENIES NMM ORGENIES NMM ORGENIES ORGENIES															1	
SYMBOLS C(Control Unit) (Reference Unit) MIN NOM MAX	3 Pi	n TO-26	63 JEDE	EC TO-2	263 Va	riation	AA	5 P	in 10-2	63 JED	FC 10-	-263 Vo	ariation	BA		
No. No.		DIMEN	SIONS IN	N INCH	DIMEN	ISIONS	N MM		DIMEN	ISIONS IN	N INCH	DIMEN	ISIONS	IN MM		
MIN NOM MAX MIN NOM MAX A	SYMBOLS	(C	ontrol U	nit)	(Ref	erence	Unit)	SYMBOLS	(C	ontrol U	nit)	(Ref	erence	Unit)		
A1	0111110000	MIN	NOM	MAX	MIN	NOM	MAX	STRIBULS	MIN	NOM	MAX	MIN	NOM	MAX		
A1	A	0.160	_	0.190	4.06	_	4.83	Α	0.160		0.190	4.06		4.83	1	
b 0.020 − 0.039 0.51 − 0.99 b2 0.045 − 0.070 1.14 − 1.78 c 0.015 − 0.029 0.38 − 0.74 c2 0.045 − 0.065 1.14 − 1.65 D 0.330 − 0.380 8.38 − 9.65 D1 0.270 − 6.86 − − E 0.380 − 0.420 9.65 − 10.67 E1 0.245 − 0.622 − − e 0.100 BSC 2.54 BSC H 0.575 − 0.625 14.61 − 15.88 L 0.070 − 0.110 1.78 − 2.79 L1 − 0.066 − 0.066 − 1.68 L3 0.010 BSC 0.25 BSC L3 0.010 BSC 0.25 BSC	A1	0.000	_	0.010	0.00	_	0.25			_					1	
Dec		0.020	_	0.039	0.51	_	0.99						_		1	
c 0.015 0.029 0.38 0.74 c2 0.045 0.065 1.14 1.65 D 0.330 0.080 8.38 9.65 D1 0.270 6.86 - - E 0.380 0.420 9.65 10.67 E1 0.245 - 6.22 - e 0.100 BSC 2.54 BSC H 0.575 - 0.625 14.61 15.88 L 0.070 - 0.110 1.78 2.79 L1 - 0.066 - 1.68 L3 0.010 BSC 0.25 BSC Q 0' 8' 0' 8'			_			_		С					-		1	
c2 0.045 — 0.065 1.14 — 1.65 D 0.330 — 0.330 — 0.380 8.38 — 9.65 D1 0.270 — 6.86 — 6.86 — 6.22 — 6.2						_		c2		_					1	
D 0.330 — 0.380 8.38 — 9.65 D1 0.270 — 6.86 — E 0.380 — 0.420 9.65 — 10.67 E1 0.245 — — 6.22 — e 0.100 BSC 2.54 BSC H 0.575 — 0.625 14.61 — 15.88 L 0.070 — 0.110 1.78 — 2.79 L1 — 0.066 — 1.68 L1 — 0.066 — 0.168 L3 0.010 BSC 0.25 BSC Q Q' B' Q' B' Q' B' Q' B' Q' D1 0.270 — 0.420 9.65 — 10.67 E1 0.380 — 0.420 9.65 — 10.67 E1 0.245 — 6.86 — — 6.22 — — 6.22 — — 6.22 e 0.067 BSC 1.70 BSC 1.70 BSC L 0.070 — 0.110 1.78 — 2.79 L1 — 0.066 — 1.68 L3 0.010 BSC 0.25 BSC Q Q' B' Q' B' Q' B' Q' B' Q' B' Q' Q Q' </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>D</td> <td></td> <td>_</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td>								D		_			_			
0.270										_					1	
E1 0.245 — 6.22 — E1 0.245 — 6.22 — e 0.100 BSC 2.54 BSC e 0.067 BSC 17.0 BSC H 0.575 — 0.625 14.61 — 15.88 H 0.575 — 0.625 14.61 — 15.88 L 0.070 — 0.110 1.78 — 2.79 L1 — — 0.066 — — 1.68 L3 0.010 BSC 0.25 BSC L3 0.010 BSC 0.25 BSC Q V B* O* B* O* 8*				_						_	0.420		_	10.67		
Color Colo			_	0.420						_			_			
B 0.575 — 0.625 14.61 — 15.88 H 0.575 — 0.625 14.61 — 15.88 L 0.070 — 0.110 1.78 — 2.79 L 0.070 — 0.110 1.78 — 2.79 L1 — 0.066 — 0.168 L1 — 0.066 — 0.168 — 1.68 L3 0.010 BSC 0.25 BSC L3 0.010 BSC 0.25 BSC Q V S O' S' Q' S' O' S'										0.067 BS	ic.		1.70 BS	ic.		
1										_			_		1	
L1 — 0.066 — 2.78 L3 0.010 BSC 0.25 BSC L3 0.010 BSC 0.25 BSC Q 0' 1 8' 0' 1 8' 0' 8'						_					_					
13			_										_		1	
d 0, 8, 0, 8, d 0, 8, 0, 8,									_						1	
			7.010 03			1.20 00				0.010 0.			1			
			- 3			3			-	5			- 5			
	N					- 5		L N		5			5			
												X4R				_
EXAR CORPOR																
Alvas Direction in Minol Signal TO—263 PACKACE											_	Ta :	-		P0D-000	0
About Desiration in Missed England Participation Services Desiration (Inc.) Participation Services Desiration (Inc.)											By: AD	Date: 11/	14/13 Re	evision: A	Sheet:	

^{*:} Dimension "A" (overall package thickness) is controlled to 0.181" maximum for XRP29302 only. Typical dimension "A" guaranteed for any other device in a 5-pin TO263 is 0.190" inch maximum.

REVISION HISTORY

Revision	Date	Description
1.0.0	12/17/2009	Initial Release of Datasheet
1.1.0	12/23/2009	Addition of ESD data
1.2.0	10/19/2010	Corrected Adjustable Regulator Design paragraph equation
1.3.0	11/25/2013	Added XRP29302A with 2.5A dropout specification Updated Package Outline Drawing. ECN 1348-10
1.4.0	03/25/2014	Corrected pin out drawings where EN was shown as VIN. ECN 14xx-xx
1.4.1	11/04/2019	Updated to MaxLinear logo. Updated Ordering Information.
1.4.2	12/15/2020	Clarified that package tab is GND on pinout. Removed obsolete TO-220, updated design example to TO-263-5.

CORPORATE HEADQUARTERS:

5966 La Place Court

Suite 100

Carlsbad, CA 92008

Tel.: +1 (760) 692-0711 Fax: +1 (760) 444-8598

www.maxlinear.com

The content of this document is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by Maxlinear, Inc. Maxlinear, Inc. Assumes no responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in this guide. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced into, stored in, or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Maxlinear, Inc.

Maxlinear, Inc. Does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Maxlinear, Inc. Receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of Maxlinear, Inc. Is adequately protected under the circumstances.

Maxlinear, Inc. May have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Maxlinear, Inc., the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

 $\label{lem:maxlinear_logo} Maxlinear logo, and any Maxlinear trademarks, MxL, Full-Spectrum Capture, FSC, G.now, AirPHY, Puma, AnyWAN and the Maxlinear logo are all on the products sold, are all trademarks of Maxlinear, Inc. or one of Maxlinear's subsidiaries in the U.S.A. and other countries. All rights reserved. O ther company trademarks and product names appearing herein are the property of their respective owners.$

© 2009 - 2020 Maxlinear, Inc. All rights reserved.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

MaxLinear:

XRP29302ETB-L XRP29302ETBTR-L XRP29302ET-L XRP29302AETBTR-L